m6米乐安卓版下载-米乐app官网下载
暂无图片
3

20230906-m6米乐安卓版下载

原创 惠星星 2023-09-07
436

0. 优化效果汇总

本案例还比较有意思,通过实操熟悉oracle到opengauss存储过程改写和og的数据库特性, 原程序为oracle 批处理业务,经过opengauss相同语义改写后,程序运行4178秒,优化改写后程序运行1240秒,使用smp并行优化后运行734秒(测试主机为个人pc虚拟机),将优化程序分享出来,有兴趣的小伙伴,可以操练起来。

image-20230907150556753

1. 性能优化意义

信息系统性能优化可以提高设备和服务的性能、降低成本和功耗、提高用户体验和服务质量,最短时间内实现业务目标。

2. 案例背景

• 税务部门在交流访问时发现在事务处理数据上运行bi程序可以有效的识别 欺诈和错误信息,规避偷税漏税行为。该系统可在几周内收回成本. • 当前系统在大型机上运行,并将所有时间都花在使用非关系型数据库,没有能力处理bi. • 税务部门对 bi 感兴趣,但仍必须能够执行基本处理。基于提供的测试数据,税务部门认为他们的主机系统 1 小时完成处理数据。税务部门将该应用程序转换为在 oracle 上运行,并且失望地发现它在小型开发服务器上运行 2 小时。税务机关认为 数据应在 10 分钟内处理完毕,以确保实际生产运行性能。客户咨询opengauss是否可以满足批处理性能要求。

3. team exercise

“vat clearing/matching(增值税清算/匹配)” – a公司向b公司销售增值税信息 – b公司向a公司采购增值税信息 – 增值税匹配要求 • “销售” 和 “采购” 数据必须匹配 • 批处理程序同时接收增值税 • 处理可能的错误数据 – 存在重复数据 – “销售” 和 “采购” 数据可能分别在不同的 “数据文件批次”

4. 业务逻辑

image-20230906174403684

image-20230906174428674

5. 测试数据说明

image-20230906174532760

6. 测试脚本运行

### 1. 原程序运行 [omm@og1 team1]$ sh run.sh sol0.sql all ### 2. 优化后程序运行 [omm@og1 team1]$ sh run.sh sol1.sql all ### 3. 只加载一批数据文件 [omm@og1 team1]$ sh run.sh sol2.sql 2001e

7. db参数要求

enable_copy_server_files=true enable_wdr_snapshot=on

8. 优化思路

原程序主要包括以下存储过程代码

8.1 prematch_buy

逐行处理输入数据,将重复、已匹配数据插入重复数据表(duplicate_buy),其它数据插入预处理购买信息表(prematch_buy).

create or replace procedure team1.prematch_buy() as declare cur refcursor; rec type_table%rowtype; begin open cur for select * from t_ext_buy; loop fetch cur into rec; exit when cur%notfound; if is_matched(rec) then insert into duplicate_buy (code, source_id, source_account, program_id, transaction_date, transaction_numeric, value1, function1, indicator, comments) values (rec.code, rec.source_id, rec.source_account, rec.program_id, rec.transaction_date, rec.transaction_numeric, rec.value1, rec.function1, rec.indicator, rec.comments); else begin insert into prematch_buy (code, source_id, source_account, program_id, transaction_date, transaction_numeric, value1, function1, indicator, comments) values (rec.code, rec.source_id, rec.source_account, rec.program_id, rec.transaction_date, rec.transaction_numeric, rec.value1, rec.function1, rec.indicator, rec.comments); exception when unique_violation then insert into duplicate_buy (code, source_id, source_account, program_id, transaction_date, transaction_numeric, value1, function1, indicator, comments) values (rec.code, rec.source_id, rec.source_account, rec.program_id, rec.transaction_date, rec.transaction_numeric, rec.value1, rec.function1, rec.indicator, rec.comments); end; end if; end loop; end; /

8.2 prematch_sell

处理逻辑与prematch_buy类似

create or replace procedure team1.prematch_sell() as declare /*declaration_section*/ cur refcursor; rec type_table%rowtype; begin /*executable_section*/ open cur for select * from t_ext_sell; loop fetch cur into rec; exit when cur%notfound; if is_matched(rec) then insert into duplicate_sell ( code , source_id , source_account , program_id , transaction_date , transaction_numeric , value1 , function1 , indicator , comments ) values ( rec.code , rec.source_id , rec.source_account , rec.program_id , rec.transaction_date , rec.transaction_numeric , rec.value1 , rec.function1 , rec.indicator , rec.comments); else begin insert into prematch_sell ( code , source_id , source_account , program_id , transaction_date , transaction_numeric , value1 , function1 , indicator , comments ) values ( rec.code , rec.source_id , rec.source_account , rec.program_id , rec.transaction_date , rec.transaction_numeric , rec.value1 , rec.function1 , rec.indicator , rec.comments); exception when unique_violation then insert into duplicate_sell ( code , source_id , source_account , program_id , transaction_date , transaction_numeric , value1 , function1 , indicator , comments ) values ( rec.code , rec.source_id , rec.source_account , rec.program_id , rec.transaction_date , rec.transaction_numeric , rec.value1 , rec.function1 , rec.indicator , rec.comments); end; end if; end loop; end;

8.3 match

逐行使用prematch_buy中的数据与prematch_sell进行对比,相匹配则记录matched,并删除prematch_buy和prematch_sell中记录。

create or replace procedure team1.match() as declare /*declaration_section*/ rec2 type_table%rowtype; ctid2 tid; begin /*executable_section*/ --for rec1 in( select x1.*, x1.ctid for rec1 in( select x1.*,ctid from prematch_buy x1) loop begin select x2.*,ctid into rec2.code, rec2.source_id, rec2.source_account, rec2.program_id, rec2.transaction_date, rec2.transaction_numeric, rec2.value1, rec2.function1, rec2.indicator, rec2.comments, ctid2 from prematch_sell x2 where x2.code = rec1.code and x2.source_id = rec1.source_id and x2.source_account = rec1.source_account and x2.program_id = rec1.program_id and x2.transaction_date = rec1.transaction_date and x2.transaction_numeric = rec1.transaction_numeric and x2.value1 = rec1.value1 and x2.function1 = rec1.function1; insert into matched (code, source_id, source_account, program_id, transaction_date, transaction_numeric, value1, function1, indicator_1, indicator_2, comments_1, comments_2) values (rec1.code, rec1.source_id, rec1.source_account, rec1.program_id, rec1.transaction_date, rec1.transaction_numeric, rec1.value1, rec1.function1, rec1.indicator, rec2.indicator, rec1.comments, rec2.comments); delete from prematch_buy x1 where ctid=rec1.ctid; delete from prematch_sell x2 where ctid=ctid2; exception when no_data_found then null; end; end loop; end;

8.4 优化思路

问题1、游标逐行匹配 原程序存储过程prematch_buy/prematch_sell/match中使用使用游标逐行匹配处理,效率较低,计划同语义改写为sql整表处理。 问题2、单进程串行处理 opengauss的smp并行技术利用计算机多核cpu架构来实现多线程并行计算,充分利用cpu资源来提高查询性能的技术。 https://docs.opengauss.org/zh/docs/5.0.0/docs/brieftutorial/并行查询.html

8.5 优化代码展示

[omm@og1 team1]$ cat sol2.sql set query_dop = 4; --step1: find duplicate ctid in t_ext_buy; insert into duplicate rows into duplicate_buy; and delete in t_ext_buy \timing drop table if exists buy_duplicate_ctid; create table buy_duplicate_ctid as select ctid ctid2 from ( select b.*, row_number() over (partition by code, source_id, source_account, program_id, transaction_date, transaction_numeric, value1, function1 order by transaction_date) rowno,ctid from t_ext_buy b) where rowno>1; insert into duplicate_buy select * from t_ext_buy where ctid in (select ctid2 from buy_duplicate_ctid); delete from t_ext_buy where ctid in (select ctid2 from buy_duplicate_ctid); --step2: delete matched or prematch rows in t_ext_buy delete from t_ext_buy s where exists (select 'x' from matched m where m.code = s.code and m.source_id = s.source_id and m.source_account = s.source_account and m.program_id = s.program_id and m.transaction_date = s.transaction_date and m.transaction_numeric = s.transaction_numeric and m.value1 = s.value1 and m.function1 = s.function1 ) or exists (select 'x' from prematch_buy p where p.code = s.code and p.source_id = s.source_id and p.source_account = s.source_account and p.program_id = s.program_id and p.transaction_date = s.transaction_date and p.transaction_numeric = s.transaction_numeric and p.value1 = s.value1 and p.function1 = s.function1 ); --step3: insert prematch rows insert into prematch_buy select * from t_ext_buy; --step4: find duplicate ctid in t_ext_sell; insert into duplicate rows into duplicate_sell; and delete in t_ext_sell drop table if exists sell_duplicate_ctid; create table sell_duplicate_ctid as select ctid ctid2 from ( select b.*, row_number() over (partition by code, source_id, source_account, program_id, transaction_date, transaction_numeric, value1, function1 order by transaction_date) rowno,ctid from t_ext_sell b) where rowno>1; insert into duplicate_sell select * from t_ext_sell where ctid in (select ctid2 from sell_duplicate_ctid); delete from t_ext_sell where ctid in (select ctid2 from sell_duplicate_ctid); --step5: delete matched or prematch rows in t_ext_buy delete from t_ext_sell s where exists (select 'x' from matched m where m.code = s.code and m.source_id = s.source_id and m.source_account = s.source_account and m.program_id = s.program_id and m.transaction_date = s.transaction_date and m.transaction_numeric = s.transaction_numeric and m.value1 = s.value1 and m.function1 = s.function1 ) or exists (select 'x' from prematch_sell p where p.code = s.code and p.source_id = s.source_id and p.source_account = s.source_account and p.program_id = s.program_id and p.transaction_date = s.transaction_date and p.transaction_numeric = s.transaction_numeric and p.value1 = s.value1 and p.function1 = s.function1 ); --step6: insert prematch rows insert into prematch_sell select * from t_ext_sell; --step7: do matched operation insert into matched select buy.code buy_code, buy.source_id buy_source_id, buy.source_account buy_source_account, buy.program_id buy_program_id, buy.transaction_date buy_transaction_date, buy.transaction_numeric transaction_numeric, buy.value1 buy_value, buy.function1 buy_function, buy.indicator buy_indicator, sell.indicator sell_indicator, buy.comments buy_comments, sell.comments sell_comments from prematch_buy buy join prematch_sell sell on buy.code = sell.code and buy.source_id = sell.source_id and buy.source_account = sell.source_account and buy.program_id = sell.program_id and buy.transaction_date = sell.transaction_date and buy.transaction_numeric = sell.transaction_numeric and buy.value1 = sell.value1 and buy.function1 = sell.function1; --step8: delete matched rows in prematch_buy delete from prematch_buy s where exists (select 'x' from matched m where m.code = s.code and m.source_id = s.source_id and m.source_account = s.source_account and m.program_id = s.program_id and m.transaction_date = s.transaction_date and m.transaction_numeric = s.transaction_numeric and m.value1 = s.value1 and m.function1 = s.function1 ); --step9: delete matched rows in prematch_sell delete from prematch_sell s where exists (select 'x' from matched m where m.code = s.code and m.source_id = s.source_id and m.source_account = s.source_account and m.program_id = s.program_id and m.transaction_date = s.transaction_date and m.transaction_numeric = s.transaction_numeric and m.value1 = s.value1 and m.function1 = s.function1 ); --step10: views select 'matched' tab, count(*) row_count from matched union all select 'prematch_buy' tab, count(*) row_count from prematch_buy union all select 'prematch_sell' tab, count(*) row_count from prematch_sell union all select 'duplicate_buy' tab, count(*) row_count from duplicate_buy union all select 'duplicate_sell' tab, count(*) row_count from duplicate_sell; set query_dop = 1; [omm@og1 team1]$

9. 优化过程记录

9.1 原程序运行

[omm@og1 team1]$ sh run.sh sol0.sql ************** complete task ********************* this step used: 4178 seconds [omm@og1 ~]$

9.2 sql修改优化

[omm@og1 team1]$ sh run.sh sol1.sql ************** complete task ********************* this step used: 1240 seconds [omm@og1 team1]$

9.3 smp并行优化

[omm@og1 team1]$ sh run.sh sol2.sql ************** complete task ********************* this step used: 734 seconds [omm@og1 team1]$

10. 程序下载

链接:https://pan.baidu.com/s/1eyi66j2c9c02kjtoigcl-a 提取码:b0p3
最后修改时间:2023-09-11 14:07:48
「喜欢这篇文章,您的关注和赞赏是给作者最好的鼓励」
关注作者
【米乐app官网下载的版权声明】本文为墨天轮用户原创内容,转载时必须标注文章的来源(墨天轮),文章链接,文章作者等基本信息,否则作者和墨天轮有权追究责任。如果您发现墨天轮中有涉嫌抄袭或者侵权的内容,欢迎发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论

网站地图